با توجه به اهمیت پیشبینی جریان رودخانه در مدیریت منابع آب روشهای مختلفی برای مدل کردن جریان رودخانهه ا بکاربرده می شوند. تا بتوان با بکارگیری این مدل در مدیریت خشکسالی و سیال خسارات ناشی از آنها را به حداقل ممکن رساند.در این مطالعه نیز برای پیشبینی سری زمانی جریان روزانه ایستگاه ونیار، با توجه به ویژگیهای غیرخطی مقیاسه ای زمانی چندگانه، مدل هیبرید شبکه عصبی و موجک پیشنهاد شده است. برای این هدف سری زمانی اصلی به مدت 53 سال بوسیله تبدیل موجکی به 11 زیرسری زمانی چند فرکانسی تجزیه شده، و سپس برای پیشبینی جریان یک و دو و سه و چهار روزآینده، این سری ها بعنوان داده های ورودی به مدل شبکه عصبی مصنوعی وارد شد. نتایج بدست آمده از تبدیل موجک-شبکه عصبی با نتایج حاصل از کاربرد شبکه عصبی، مقایسه شده و ملاحظه گردید که روش موجک-شبکه عصبی نسبت به روش شبکه عصبی دقت پیش بینی بالاتری دارد و همچنین دقت پیش بینی در هر دو مدل با افزایش تعداد تأخیرها در نرون خروجی کاهش می یابد. لازم بذکر است که در پیش بینی توسط شبکه عصبی- موجکی از دو موجک هار و میر استفاده شد که نتایج شبیه سازی توسط موجک میر به مراتب بالاتر از موجک ها بود.